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Introduction
● In the past decades, researchers have made significant progress on facial 

expression recognition (FER) with algorithms and large-scale datasets, where 
datasets can be collected in laboratory or in the wild.

● However, for the large-scale FER datasets collected from the Internet, it is 
extremely difficult to annotate with high quality due to the uncertainties.
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Introduction
● Generally, training with uncertainties of FER may lead to the following 

problems.
○ First, it may result in overfitting on the uncertain samples which may be 

mislabeled.
○ Second, it is harmful for a model to learn useful facial expression 

features.
○ Third, a high ratio of incorrect labels even makes the model 

disconvergence in the early stage of optimization.
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Introduction
● To address these issues, we propose a simple yet efficient method, termed as 

Self-Cure Network (SCN). The SCN consists of three crucial modules:
1. self-attention importance weighting
2. ranking regularization
3. noise relabeling

● We elaborately design a rank regularization to supervise the SCN to learn 
meaningful importance weights, which also provides a reference for the 
relabeling module.

● We extensively validate our SCN on synthetic FER data and a new real-world 
uncertain emotion dataset (WebEmotion) collected from the Internet.
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Related Work
Facial Expression Recognition

● According to the facial feature type, they can be grouped into engineered 
features and learning-based features.

● Engineered features
○ SIFT [34], HOG [6], Histograms of LBP [35], Gabor wavelet coefficients [26], etc.

● Learned features
○ Facial Action Units based CNN [27]
○ region-based attention networks [25] [42]

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
[25] Y. Li, J. Zeng, S. Shan, and X. Chen. Occlusion aware facial expression recognition using cnn with attention mechanism. IEEE Transactions on Image 
Processing, 28(5):2439–2450, May 2019.
[26] Chengjun Liu and H. Wechsler. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions 
on Image Processing, 11(4):467–476, April 2002.
[27] Mengyi Liu, Shaoxin Li, Shiguang Shan, and Xilin Chen. Au-inspired deep networks for facial expression feature learning. Neurocomputing, 159(C):126–136, 
2015.
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[35] Caifeng Shan, Shaogang Gong, and Peter W. McOwan. Facial 
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comprehensive study. Image and Vision Computing, 27(6):803 – 
816, 2009.
[42] Kai Wang, Xiaojiang Peng, Jianfei Yang, Debin Meng, and Yu 
Qiao. Region attention networks for pose and occlusion robust 
facial expression recognition. arXiv preprint:1905.04075, 2019.



Related Work
Learning with Uncertainties

● In order to handle noisy labels, one intuitive idea is to leverage a small set of 
clean data that can be used to assess the quality of the labels during the 
training process [40, 23, 8], or to estimate the noise distribution [36], or to 
train the feature extractors [3].

● For the FER task, Zeng et al. [43] first consider the inconsistent annotation 
problem among different FER datasets, and propose to leverage these 
uncertainties to improve FER.

[3] Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, and Trevor Darrell. Auxiliary image regularization for deep cnns with noisy labels. arXiv preprint:1511.07069, 
2015.
[8] Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps. Avoiding your teacher’s mistakes: Training neural networks with controlled weak 
supervision. arXiv preprint 1711.00313, 2017.
[23] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia Li. Learning from noisy labels with distillation. In ICCV, pages 1910–1918, 2017. 7

[40] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav 
Gupta, and Serge Belongie. Learning from noisy large-scale 
datasets with minimal supervision. In CVPR, pages 839–847, 2017.
[43] Jiabei Zeng, Shiguang Shan, Xilin Chen, and Xilin Chen. Facial 
expression recognition with inconsistently annotated datasets. In 
ECCV, pages 222–237, 2018.



Self-Cure Network
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Self-Attention Importance Weighting
● The self-attention importance weighting module is comprised of a linear 

fully-connected (FC) layer and a sigmoid activation function.

● In this paper, we choose the logit-weighted one of [17] which is shown to be 
more efficient.

● The self-attention weights in the above module can be arbitrary in (0, 1).

[17] Wei Hu, Yangyu Huang, Fan Zhang, and Ruirui Li. Noisetolerant paradigm for training face recognition cnns. In CVPR, 
pages 11887–11896, 2019.
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Rank Regularization
● In the rank regularization module, we first rank the learned attention weights 

in descending order and then split them into two groups with a ratio β.
● The rank regularization ensures that the mean attention weight of 

high-importance group is higher than the one of low-importance group with a 
margin.

● where δ1 is a margin which can be a fixed hyper parameter or a learnable 
parameter.

● In training, the total loss function is L = γ LRR + (1 − γ) LWCE where γ is a 
trade-off ratio.
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Relabeling
● A sample is assigned to a new pseudo label if the maximum prediction 

probability is higher than the one of given label with a threshold δ2.

● In our system, uncertain samples are expected to obtain low importance 
weights thus to degrade their negative impacts with re-weighting, and then 
fall into the low importance group, and finally may be corrected as certain 
samples by relabeling.

● which is the reason why we call our method as self-cured network.
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Experiments
Datasets

● RAF-DB [22]
○ 30000 images
○ 6 expressions

● FERPlus [4]
○ about 36000 images
○ 8 expressions

● AffectNet [32]
○ 450000 images
○ 8 expression

● The collected WebEmotion
○ 41,000 videos downloaded from YouTube
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[22] Shan Li, Weihong Deng, and JunPing Du. Reliable 
crowdsourcing and deep locality-preserving learning for expression 
recognition in the wild. In CVPR, pages 2852–2861, 2017.
[24] Yong Li, Jiabei Zeng, Shiguang Shan, and Xilin Chen. 
Occlusion aware facial expression recognition using cnn with 
attention mechanism. TIP, 28(5):2439–2450, 2018.



Experiments
Evaluation of SCN on Synthetic Uncertainties
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[14] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, 
Dengke Dong, Matthew R. Scott, and Dinglong Huang. 
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images. In ECCV, September 2018.
[46] Weihe Zhang, Yali Wang, and Yu Qiao. Metacleaner: Learning 
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recognition. In CVPR, June 2019.

Pretrained model on Ms-Celeb-1M [15]
[15] Yandong Guo, Lei Zhang, Yuxiao 
Hu, Xiaodong He, and Jianfeng Gao. 
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Experiments
Visualization of α in SCN
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Experiments
Exploring SCN on Real-World Uncertainties

Our collected WebEmotion dataset consists of massive noises since the searching 
keywords are regarded as labels.
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Experiments
Ablation Studies
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Experiments
Comparison to the State of the Art
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Conclusion
● This paper presents a self-cure network (SCN) to suppress the uncertainties 

of facial expression data thus to learn robust feature for FER.

● The SCN consists of three novel modules including self-attention importance 
weighting, ranking regularization, and relabeling.

● Our SCN achieves state-of-the-art results and can handle both synthetic and 
real-world uncertainties effectively.

19



Progress Report
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Datasets
● 40 videos from 高榮

● Conversational Question Answering
● 臨床失智評估量表 CDR
● 0 健康 / 0.5 疑似輕微 / 1 輕度 / 2 中度

● CDR = 0.5 / 1 / 2：17 / 19 / 4 videos

GOAL
● Input Videos → Model → CDR Score ( 0.5 / 1 / 2 or 0.5 / 1+2)



Visual Features
● Local Feature

○ Pupil Detection
○ P(x,y) → dx, dy → STFT (10 frames) → superposition

22  CDR = 0     CDR = 1 CDR = 2



Visual Features
● Global Feature

○ Pupils Detection & Head Pose Estimation
○ Pearson Correlation
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Visual Features
● Local & Global Features
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 2. 1. 0. 2. 0. 0. 0. 0.]
pred= [1. 0. 1. 0. 1. 1. 1. 2. 2. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1.]
Accuray = 12/20 (60%)

○ version 2
true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0.]
pred= [1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 1.]
Accuray = 16/20 (80%)
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Visual Features
● Data Augmentation (flip horizontally)
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

Accuray = 18/40 (45%)
○ version 2

Accuray = 20/40 (50%)
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Speech Features
● Mel-scale Frequency Cepstral Coefficients (MFCC)
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 2. 1. 0. 2. 0. 0. 0. 0.]
pred= [0. 0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0.]
Accuray = 8/20 (40%)

○ version 2
true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0.]
pred= [0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 0.]
Accuray = 11/20 (55%)
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Speech Features
● GeMAPS defines a minimalistic feature set (Extracted using OpenSMILE).
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reference:
The geneva minimalistic acoustic parameter set 
(gemaps) for voice research and affective computing
Opensmile: the munich versatile and fast open-source 
audio feature extractor



Speech Features
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 2. 1. 0. 2. 0. 0. 0. 0.]
pred= [0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 1. 0. 0. 1. 1.]
Accuray = 12/20 (60%)

○ version 2
true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0.]
pred= [0. 1. 1. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
Accuray = 11/20 (55%)
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Speech Features
● MFCC & GeMAPS
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 2. 1. 0. 2. 0. 0. 0. 0.]
pred= [0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0.]
Accuray = 11/20 (55%)

○ version 2
true = [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0.]
pred= [0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0.]
Accuray = 13/20 (65%)
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Visual (augmented) & Speech Features
● Train SVM

○ version 1 - Label：0 / 1 / 2 → CDR = 0.5 / 1 / 2
○ version 2 - Label：0 / 1 → CDR = 0.5 / 1 + 2

● Result
○ version 1

Accuray = 22/40 (55%)
○ version 2

Accuray = 23/40 (57.5%)
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